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A discrete analog of the WKB or Liouville-Green approximation for the ,olution
of second order differential equations is discussed. The method is then applied to
obtain asymptotic solutions to second order difference equations whose coefficients
are regularly varying. .r) 19n Academic Press. Inc.

1. INTRODUCTION

The WKB (Wentzell, Kramers, and Brillouin) or Liouville-Green
method for second order differential equations is a powerful method for
obtaining asymptotic approximations to solutions of these types of equa­
tions (Olver [16]). Here motivated by the work of Braun [1] we present
a discrete analog of this method (Smith [18 J, Wilmott [24]). Consider the
second order difference equation

d(n+ 1) y(n+ 1)-q(n) y(n)+ .v(n-l)=O, (Ll. !

where d(n) and q(n) are sequences of complex numbers with d(n) oF 0,
n = 1, 2, .... If we look for a solution of (1.1) of the form

n

yin) = fl u(k),
k~no

(1.2)
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we arrive at the discrete Riccati equation

d(n + 1) u(n + 1) u(n) - q(n) u(n ) + 1 = 0.

If we rewrite Eq. (1.3) as

u(n + 1)
d(n + 1) u(n)2- q(n) u(n) + 1 = 0,

u(n)

(1.3)

(1.4 )

and suppose that limn ~XJ d(n + 1) = 1 and limn ~ eX! u(n )/u(n + 1) = 1, then
the solutions of the equation

uo(n)2 - q(n) uo(n) + 1= 0, (1.5)

i.e.,

() q(n)+Jq(n)2-4
(1.6)Uo n = 2 '

and

() q(n)-Jq(n)2-4
(1.7)Vo n = 2 '

where as a complex function we take the branch of the square root so that

Iz+Jz2-41 > 1 (1.8)

for Z E C\ [ - 2, 2], might be expected to yield adequate approximations to
(1.4). This is indeed true if the coefficients in (1.4) approach sufficiently
rapidly their asymptotic values (Mate and Nevai [11], Van Assche and
Geronimo [23], Mate, Nevai, and Totik [12]). If we suppose un/un + 1 to
be known and solve (1.4) for Un then

u(n)= q(n) u(n)
2 d(n+ 1) u(n+ 1)

J(q(n) 1 u(n) )2 u(n)
+ -2-d(n+l)u(n+l) - d(n+l)u(n+l)'

(1.9)

We now follow Braun and develop an iteration procedure for (1.9) by
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replacing u(n) in the right hand side of that equation with uo{n) which
yields

q(n) 1 uo(n)
ul(n)=------.:::..:.-~

2 den + 1) uo(n + 1)

{
q(n) uo(n) ) L uo(n)

+ -2- den + 1) uo(n + 1)S - den + 1) uo(n + 1r

Since uo(n )/d(n + 1) uo(n + 1) ~ 1 we expand the left hand side in a Taylor
senes III

uo(n)
t=------

den + 1) uo(n + 1)

about 1. This gives

{1.10 )

This equation can be written using the definition of uo(n) as

.) (){ uo(n) [uo(n)-d(n+l)uo(n+l)]lu, (n = Uo n 1+ -,-,--_......c:..'--_-,-- -=----:'-'----'--~-~--=-:-~.=.(
- d(n+l)uo(n+l) uo(n)-l/uo(n) J

+ O((t-l)2). (1.12)

Since uo(n )/d(n + 1) uo(n + 1) - 1 = t - 1 a useful solution would be to

replace uo(n )/d(n + 1) uo(n + 1) by 1 in the above equation. This we wiH do,
however, for the applications below it will be more convenient to consider

( ' (r [uo(n)-d(n+l)uo(n+l)])-l
U2 n) = Uo n) d - (1/ ( ) tl Uo n) - uo n )

(Ll3}

This is one of the approximate solutions of the Riccati equation that we
wish to use. If we repeat the same procedure with vo{n) in place of uo('1)
we find that the second approximate solution is

,()_ (){l_[vo(n)-d(n+l)vo(n+l)])~l
v? n - Vo n ., ~.
- '- vo(n)-l/vo~n) j

(1.14)

We note that the procedure given above, although purely formal, is useful
in obtaining approximate solutions. One might imagine cases that would
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arise where higher order terms would be useful, but in the next section we
give conditions on the coefficients in (1.1) which imply that we need not
·take more terms into consideration. Finally in Section 3 we use this techni­
que to obtain asymptotics for polynomials orthogonal on an infinite inter­
val whose recurrence coefficients are regularly or slowly varying. The idea
of explicitly using the theory of regular variation to compute the
asymptotics of orthogonal polynomials was introduced by Van Assche
[19,20] although precursors can be found in Nevai and Dehesa [13].
There has been much interest in polynomials whose recurrence coefficients
are regularly varying because of their relation to polynomials orthogonal
with respect to Freud type weights (Lubinsky [7], Lubinsky and Saff
[10], Lubinsky, Maskar, and Saff [9], Nevai [14,15], Rakhmanov [17],
Van Assche [22]). In Van Assche and Geronimo [21] and Geronimo and
Van Assche [4] strong asymptotics outside the oscillatory region were
given for polynomials whose recurrence coefficients are regularly varying.
Here and in future paper (Geronimo, Smith, and Van Assche [5]) we
extend the results in [21] to a wider class of polynomials, in particular
to those which have recurrence coefficients that are slowly varying.
Polynomials with slowly varying recurrence coefficients are closely related
to those orthogonal with respect to Erdos-type weights which have been
extensively investigated by Lubinsky [8].

2. JUSTIFICATION OF THE ApPROXIMATE SOLUTIONS

In order to get conditions on the coefficients in (1.1) so that u2(n) and
t'2(n) can be used to approximate the solutions of (1.1) we begin by
considering the equation

sen) yen + 1) + r(n) yen) + y(n-1) = 0, (2.1 )

where r(n) and s(n) are sequences of complex numbers and s(n) # 0 for n
sufficiently large.

THEOREM 2.1. Suppose for N l > n ~ N (Nl may be infinite) there are
solutions f(n) and g(n), respectively, of the discrete Riccati equation

s(n)f(n+ l)f(n)+r(n)f(n)+ 1 = ((n),

s(n) g(n + 1) g(n) + r(n) g(n) + 1 = ((n),

(2.2)

(2.3 )
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ll'here s(n) =1= 0, g(n) =1= 0, and f(n) =1= 0, N, > n ? N,

Vl-l

L 1~(i)1 < en,
i=N

_\1- 1

L Is(i)1 < Xi,
l=,\"

and there exists a constant c such that

273

(2.4a)

(2Ab)

I'i! ±(s(j)f(j+ l)f(j))-ll <c,
I k~i j~[ I

and

Then there exist solutions y ± of (2.1) such that

and

(2.5a)

(2.5b)

(l.6al

Proof. Substitute

in Eq. (2.1) then use (2.2) to find

(2.7)

s(n)f(n + l)f(n) ¢J(n + 1) + f(n) r(n) ¢J(n) + ¢J(n -1) = -~(n). (2.8)

Now use (2.2) once again to eliminate f(n) r(n) in the above equation,
which gives

s(n) f(n + 1) f(n)( ¢J(n + 1) - ¢J(n») - (¢J(n) - ¢J(n - 1)) = - ~(n)( 1+ ¢J(n)).

Two linearly independent solutions of the homogeneous equation
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¢>~(n) = 1,

n-l i

¢>~(n)= L TI (s(j)f(j+1)f(j))-1,
i=N-l j=N

(2.11)

(2.12 )

If we use the method of variation of constants we find that

n-l

¢>(n) = - L ~(i)( 1+ ¢>(i))
i~N

x (¢>~(i) ¢>~(n) -¢>~(i) ¢>~(n))

s(i) f(i + 1) f(i)( ¢>~(i+ 1) ¢>~(i) -¢>~(i + 1) ¢>~(i))'

(2.13 )

is a solution of (2.9). Equations (2.11) and (2.12) allow (2.13) to be
rewritten as

n-l

¢>(n) = - L G(n, i) ~(i)(1+¢>(i)),
i=N

where

n-l k

G(n, i)= L TI (s(j)f(j+ l)f(j))-l.

Set
n-l

¢>I(n) = - L G(n, i) ~(i)(1+ ¢>I- l(i))
i=N

with ¢>o(n) = O. Then

n-l

l¢>l(n)1 = l¢>l(n)-¢>O(n)l:s.;;c L 1~(i)I,
i=N

by (2.5a). Since
n-l

(2.14)

(2.15 )

(2.16 )

(2.17 )

¢>I(n)-¢>I-l(n)=- L G(n,i)~(i)(¢>I-l(i)_¢>1-2(i)), (2.18)
i=N

we find by counting that

W(n) _¢>I- l(n)1 :s.;; (c L:7,:-f! I~(i)1 )', (2.19 )
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which in turn implies (2.6a) because rjJ(n) = r..T~ 1 (r/J'(n) - r/Jl-l(n)). To
obtain (2.6b) make the substitution

n

y_(n)= TI g(i)(l+¢(n)
i=IV

(2.20 )

in (2.1), then follow procedures similar to those above, with the exception
that instead of (2.12) use

which yields

where

Nj-l N[-l

rj~(n) = I TI sU) g(j + 1) g(j),
k=n+ 1 j=k

.'1[-1

~(n)= I W)GI(n,i)(l+~(i»,
i=n+ 1

i i-1

G1(n, i) = I TI s(j) g(j + 1) g(j).
k~n+lj=k

(2.21 )

(2.22)

(2.23)

Now using successive approximations, (2Ab) and (2.5b) yield (2.6b).

LEMMA 2.2. Suppose in (2.2) that f( n ) of- 0 and s(n ) of- 0 for n ~ 2'1 and let
y(n) be a solution of (2.1) with initial conditions

y(N-1)=I,

y(N) = h.

Then
n

y(n)= TI f(i)(l +rjJ(n»,
1=1"1

with

( h) n-I

¢J(n) = 1(2'1) -1 rjJ~(n) -'~N ((i)(l + rjJU» G(n, i),

(2.24)

(2.25 )

(2.26 )

n~N-1, (2.27)

where it is always assumed that the empty product is equal to one.

Proof From (2.12) we find that r/J~(N- 1) = 0 and r/J~(N)= 1. Set

"
y(n)= n f(i)(l +cp(i);

i~N

(2.28 )
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then ¢l(n) is a solution of (2.29) with initial conditions ¢l(N -1) = 0 and
¢leN) = (hlf(N)) -1. Using (2.11) and (2.12) we find that

n-l

¢l(n)=c l¢l7(n)+cz¢lg(n)- I ~(i)(l+¢l(i))G(n,i),
i~l

n~N-1, (2.29)

where G(n, i) is given by (2.15). The boundary conditions on ¢l(n) imply
that Cl = 0 and Cz = ¢leN), which yield the result.

The rest of this section is devoted to finding conditions on d(n) and q(n)
so that the hypotheses of Theorem 2.1 are fulfilled.

THEOREM 2.3. In (1.1) let q(n)=q(x,n), N~n<Nl' x complex, be a
complex function of x which is finite for x finite. Suppose d(n) is a sequence
of complex numbers such that d(n) =f. 0, N ~ n < Nt. Suppose there exists a
compact set C of the complex plane containing an open set U such that
[ -2,2] c U and q(x, n) f/= C for all N ~ n < N l < 00. Finally suppose

uoC-r, n) - den + 1) uo(x, n + 1)---'----'-------:..--- =f. 1,
uo(x, n) - 1Iuo(x, n)

and

VoC-r, n) - den + 1) vo(x, n + 1)
--------"--'---- =f. 1,

voC\", n) - 1Ivo(X, n)

(2.30)

(2.31 )

Then there exist two solutions y ± of (2.1) such that

and

where

(2.32a)

(2.32b)

and

((n) = den + 1) v2(n + 1) vz{n)- q(x, n) vz(n) + 1.

(2.33a)

(2.33b)
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For Nt infinite assume that (2.30) and (2.31) hold for all If;': N, that

277

and that

q(x, n) ¢ C 'In;,: N, (2.34)

where

and

Then

ex:

L (1L1(n)1 2 + Ir(n)1 2 )< CYJ,

N

ex:

L (1L1(n+ 1)-L1(n)1 + Ir(x, n+ 1)-r(x,nll)< 00,

.'1/

L1 (n) = 1 - d(n)

r(x, n) = q(x, n + 1) - q(x, n).

(2.35 )

(2.36)

(2.37)

and
x

L !((n)1 <x'
,'If

(2.38 )

and (2.32) holds for all n, N ~ n < 00.

Before proving the theorem we prove a technical lemma.

LEMMA 2.4. Let uo(x, n) and vo(."I:, n) be given by (1.6) and (1.7), respec­
tively, and set

s(x, n) = Jq(x, n + 1)2 -4 + o,jq(x, n)2 -4. (2.39)

Then

Uo(x, n + 1) - uo(x, n)

r(x, n) [ q(x, n+ 1) + q(x, n)l=--1+ ,
2 s(x,n) J

110(X, n + 1) - vo(."\:, n)

= r(x, n) [1- q(x, n+ l)+q(x, n)J
2 s(x,n) '

(2AO)

(2.41 )
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Uo(x, n + 1) - 2uo(x, n) + uo(x, n -1)

= [r(x, 11) - r(x, n - 1)J [1 + q(x, 11 + 1) + q(x, n )J
2 S(X,11)

r(x, 11 -1) [r(x, n)+r(x, 11 -l)J
+ 2 s(x, 11)

r(x, 11 - 1)(q(x, n) + q(x, 11 - 1»
2s(x, 11) s(x, n -1)

[
q(x, n + 1f - q(x, n - 1)2 J

X ? / ,,'
Jq(X, n + 1)- -4 + y q(X, 11 -1)--4

(2.42 )

(2.44 )

[VoCX-, n + 1) - 2vo(x, 11) + voCx-, n - 1)]

= r(x, 11) - r(x, n - 1) [1 _ q(x, 11 + 1) + q(x, n )J
2 s(x,n)

_ r(x, n -1) [r(X, n) + r(x, n -l)J
2 s(x,n)

r(x, n -1 )(q(x, n) + q(x, n - 1»
+~~_~~---.:....~c..:.......: __~

2s(x, n) s(x, n - 1)

[
q(x,n+1)2-q(x,n-1f J

x (2.43)
Jq(x, n+ 1)2-4+Jq(x, n-1)2-4 .

Proof Equations (2.40) and (2.41) follow immediately from the defini­
tions of uo, VO, r, and s. To show (2.42) subtract (2.40) from itself with n
replaced by n - 1 to find

uo(x, n + 1) - 2uoCx-, n) + uoCx-, n - 1)

r(x, n)- r(x, n -1) [1 + q(x, n + 1) + q(x, n)J
2 s(x,n)

+ r(x, n-1) [r(x, n) + r(x, n -l)J
2 s(x,n)

r(x, n - 1) [1 1 J+ 2 (q(x,n)+q(x,n-1» -(-)- ( -1)·s x, n s x, n

If we put the last term on the right hand side of the above equation over
a common denominator, then clear the radicals in the numerator, we arrive
at (2.42). Equation (2.43) follows in an analogous fashion.
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Proof of Theorem 2.3. We begin by noting that the hypothesis on
q(x,n) imply that there exists a d>1 such that luo(x,n)l>d and
IvoC", n)1 < d- 1 for N ~ n < Nt. This coupled with the fact that d(n) is non­
zero for N~n<Nt implies that u2(x,n) and v2(x,n) are bounded aI,vay
from zero. Equations (2.30) and (2.31) imply that they are bounded away
from infinity. If N 1 is finite this is sufficient for the conclusions of the
theorem to hold since all the sums and products in (2.4a), (2.4b), (2.5a},
and (2.5b) are finite. Suppose Nt is infinite; then (2.35) implies tha~

lim,,~ x dIn) = 1. If we write (1.13) and (1.14) as

and

where

and

v2(x, n) = voC", n){ I-w(x, 11)} -1,

[uo(x, n) - d(n + 1) uo(x, n + 1)]
y(x, n) = -=---'-'---'--'----=---~

uo(x, n) - l/uo('" n)

(2.45 )

(2.46 )

{2.47 )

[vo(x, n) - d(n + 1) vo(x, n + 1)]
w(x,n)= , (2.48)

vo(x, n) - l/vo(xo n)

we see that y( x, n) and w(x, n) can be recast as

(
(uo(x,n+l)LI(n+l)+d(n+ I)(uo(x,n)-uo(x,n+ 1)))

}' x, n)= .
uo(x, n) - I/uo(x, n j

and

. (_ ) _ (vo(x, n + 1) LI(n + 1) + d(n + 1)(voe" n) - VoC", n+ 1)))
w~n- .

vo(x, n) - I/L'o(x, n)

(2,49)

(2.50)

It follows from (2.35), Lemma 2.4, and the above two equations that for all
n sufficiently large

and
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This and d(n) --+ 1 imply that there is a constant c such that (2.5a) and
(2.5b) hold with s(j) = d(j + 1). We now show the first part of (2.38). To
this end substitute (1.13) into (2.32) to get (we suppress the x dependence)

(
y(n + 1) )( y(n) )

¢(n) = d(n + 1) uo(n + 1) uo(n) 1 ( 1· + 1 1 .) + 1
-yn+ ) -yIn

(
y(n) )

-q(n)uo(n) 1_y(n)+1 +1. (2.51 )

2() y(n)
Uo n

1- y(n)

Now subsitute (1.5) into the above equation and use the fact that
q(n) = uo(n) + 1juo(n) to find

J:() d( 1) ( 1) y(n + 1) }'(n)
.. n = n+ uon+ uo(n)(1_y(n+1))(1_}'(n))

}'(n + 1)
+ d(n + 1) uo(n + 1) uo(n) --'---'----'----­

1-y(n+ 1)

. y(n)
+ d(n + 1) uo(n + 1) uo(n)--­

1- y(n)

( ) (
uo(n) - d(n + 1) uo(n + 1)) (uo(n) -1juo(n))

-Uo n uo(n)-1juo(n) (1-y(n)) (1-y(n))

y(n)
- (uo(n) + 1juo(n)) 1 _ y(n) uo(n). (2.52)

Combining the third term on the RHS of the above equation with the fifth
term yields

¢(n) = d(n + 1) uo(n + 1) uo(n) ~_}:....;I(_n_+_1-,--)}:...:!(-,n),----_
(l-y(n+ 1)(1-y(n))

y(n)2
-uo(n) 1-y(n) (uo(n)-1juo(n))

y(n) y(n+1)

1 ()
+d(n+1)uo(n+1)uo(n)

-y n 1-y(n+ 1)

y(n)
-uo(n) 1 ()(l-}'(n))(uo(n)-1juo(n)).

-yn

Now combine the second, third, and fifth terms to get

¢(n) = d(n + 1) u2 (n + 1) u2 (n) y(n + 1) }'(n)

y(n + 1)
+ d(n + 1) uo(n + 1) uo(n) --'---'---­

1-y(n+ 1)
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This can be rewritten as

231

~(n) = din + 1) u2(n + 1) u2(n h(n + 1) }'(n)

+d(n+ 1)u2(n+ 1) u2(n)(}'(n+ 1)-j'(n))

-u2(n)(uo(n)-I/uo(n)) /,2(n). (2.53)

It is easy to see from (2.49) and Lemma 2.4 that the first part of (2.35 i
implies the summability of the first and third terms on the right hand side
of (2.53). If we difference (2.49) and use (2.40) and (2.42) it is elementary
but tedious to show that (2.35) implies the summability of the second term
on the right hand side of (2.53). This shows that ~(n) is summable. If we
apply the same procedure to (2.33) we find

((n) = d(n + 1) v2(n + l) v2(n) win + 1) wIn)

+d(n+ 1) v2(n+ 1) 1'2(Il)(wln+ l)--w(n))

- P2(n)(vO(n) - Lvo(n)) w(n)2, (2,54)

and it is not difficult to deduce that (2.35) impiies that summability of
(2.54).

Remark. Note that if N l is infinite (2.34) and (2.35) imply via (2A9)
and (2.50) that there exists an No such that (2.30) and (2.31) are satisfied
for n~No.

In order to examine solutions in the oscillatory region [ - 2, 2], we must
put stronger conditions on the coefficients in the recurrence formula. We
will only consider the case when N 1 is infinite as the case for N I finite
follows as before.

THEOREM 2.5. Suppose d( n) =1= O. n ~ N,

x

L (1,1(n)1 + Ir(x, n)l) <x,
N

(2.55 )

and there exists a compact set C 1 containing an open set [J such that
{2, -2} c U. Suppose q(x, n) ¢ C l for n ~ N. Finally suppose (2.30) and
(2.31 1 hold for n ~ N. Then

L 1((n)1 < oc
N

and
X-

L le(n)1 <x.
i\"

\2.56)

and there exists t\l'O solutions y± of (2.1) sllch that (2.32) holds for aU n
greater than N.
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Proof The hypothesis on q(x, n) imply that there is a d> 0 such that
luo(x, n) + (-1) i l > d and Ivo(x, n) + (_I)il > d, i= 0,1. Thus U2(X, n) and
v2(x, n) are bounded away from zero. They are also bounded away from
infinity by (2.30) and (2.31). Equations (2.49) and (2.53) show that the
summability of r and A imply the summability of ~. We must show that

m k

G(m,n)= L TI (d(j+l)u2(j+l)u2(j))-1 (2.57)
k~n j~n+l

is bounded for all m ~ n ~ N. Since d(n) --+ 1 by (2.49) we can find an No
such that for n ~No, d(n + 1) u2(n + 1) u2(n) is bounded strictly away from
1. Thus for n ~ No

m I-t(k+l) k .
G(m, n) = k~n 1 - t(k + 1) j ~~+ 1 t(j),

where

Summing the LHS of (2.58) by parts gives

1 m k

G(m, n) = 1 _ t(m + 1) k~n (1 - t(k + 1)) j~~+ 1 t(j)

- k~n[t~ (1- t(l + 1)) j ~~+ 1 t(j) ]

x C-t(~+ 1) -1_lt(k)).

(2.58 )

(2.59 )

If we sum the first term and the term in the brackets in the second term
on the RHS of the above equation we find

1 ( m+l )

G(m,n)=I_t(m+l) I-j=~+l t(j)

m ( k )( 1 1)- L 1- TI t(j) - .
k~n+l j~n+l I-t(k+l) I-t(k)

This in turn can be rewritten as

G(m, n) = 1 TI7~+nl+ 1 t(j)
1- t(n + 1) 1 - t(m + 1)

m k (1 1)
+ L TI t(j) - .
k~n+l j~n+l I-t(k+l) I-t(k)

(2.60)

(2.61 )
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Since Iuo(x, 11)1 ~ 1 implies (2.59),

. 11-)'(x,j+ 1)111-}'(x,I~i

11U)I:( !d(j + III .

283

(2.62)

The summability of ')'( x, j) and (1 - d(j)), guaranteed by (2.49) and (2.S5),
plus the fact that d(n) is bounded away from zero and )'( x, j) is bounded
away from infinity imply there exists a constant C2 such that

Thus

xc

Il Il(j)1 < C 2 ·

j~ .V

(2.63 )

I
I I ('IG(m, n)1 :( + -2 .

.. 1 - l(n + 1) 11 - t(m + 1 II

m I 1 1 I+Co -~k~11 I-t(k+l) I-t(k) '

The boundedness of IG(m, n)1 now follows from (2.59), (2.55), arrd
Lemma 2.4 since t(k) is strictly bounded away from one. If we write

"
G1(m,n)= I n d(j+l)voU+l)vo(j) (2.65)

k~m+l j~k

then analogous considerations to those given above show that it is
bounded for n ~ m ~ N. Thus the result is proved.

LEMMA 2.6. Suppose in (Ll) d(n)=all;'a"_1 and q(x,n)=(x-bll)/a,,~

where all' b" E IR and an > 0 for all n ~ N. Then (2.30) and (2.31) are fuffilled
for x E C\fH and n ~ N.

Proof From (1.6) and ( 1.7) we see that for x E C, fH, voeX', 11) ­

l/vo(x, n) and uo(x, 11) - l/uo(.\', n) are not equal to zero for all n ~ N. If we
look for equality in (2.30) and (2.31) we find that

and

. a" + I. ( . 1"uolX, n) - -- uo(x, n + 1) = uo(x, n)-, )
an UoIX, n)
,")

. a,,+1 , ( 1 \volx, n) - -- vo(.\', n + 1J= vo(x, n) - , ,.
a" L·o(X, n)/

(2.66)

(2.67;,
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Now substitute (1.6) in (2.66) and (1.7) into (2.67) and use the substitution
for q(x, n) indicated in the hypothesis of the lemma to find respectively

J(X- bn)2 -1 + an+1J(X- bn+1)2 -1 = ± b l1 +1- bn, (2.68)
2an an 2an+ 1 2an

where the plus sign is associated with (2.66) and the minus sign with (2.67).
The result will follow if we show that for x complex the LHS of (2.68) has
an imaginary part since the RHS by hypothesis is real. Since the imaginary
part of the LHS of (2.68) is harmonic for 1m x > 0, examining the values
of this function for 1m x =°and for Ixl --* CJJ and using the determination
of the square root given by (1.8), we conclude from the minimum principle
that it cannot be equal to zero for 1m x> 0. Analogous considerations
show that the imaginary part of the LHS of (2.68) does not vanish for
Imx<O.

3. RECURRENCE FORMULAS WITH REGULARLY VARYING COEFFICIENTS

We now apply the previous results to some specific examples. In (1.1) let

d(n + 1) = an + 1

an
and

x-b
q(x, n)= __n,

an
n>O, (3.1 )

where the an's and bn's are regularly varying at infinity, i.e., there exists an
increasing positive sequence {An, n = 0, 1, ... } such that

1
. bn
1m -=bE IR,

n~oc, An
(3.2)

with

I· (,111+ 1 1)1m n --,- =0:~0.
n_,'X) An

(3.3 )

0: is called the index of regular variation. We assume that an + I> 0, bn E IR,
n=O, 1,2, ..., and

I
· (bn+l-bn)
1m n bo:o

n-x An
(3.4 )

From the theory of regularly varying sequences (Bojanic and Seneta [3]),
(3.2) and (3.3) imply that there exist functions l(x), 11(x), and 12(x) defined
by

l(x) = A[x]

[x]""
I (x) = a[x]

1 a[x]""
I ( ) _ b[x]

2 x - b[x]'" , b=/=O (3.5)
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(3.6)

for every t > O. Here [x] means the integer part of x. Functions satisfying
(3.6) are said to be slowly varying. Therefore ail and D" have the represercta­
tion

Equation (3.2) implies that

and bn = bn'jAn). (3.7)

1
. 11(x)
1m --

x~:c I(x)
1
. 12(x)
1m --= 1.

< ~ O'C I(x)
(3.8 )

Equations (3.3), (3.4), and (3.5) imply that

1· (/(n+l) 1) l' (/1 1(n+1) 1\1m n - = 1m n - )
n~:c I(n) Il~X Idn)

1· ("lz(n+l) 1') 0= 1m 11, - =.
n~x \. 12(n)

(3.9)

It follows from the theory of regularly varying sequences [3. Theorem 4]
that

1· aCtllJ t~1m --=
ll_ X an

and I, bCI1/1 t"1m --~=

!l-,Jj b
il

(3,10)

for every t > 0 and (3.10) coupled with (3.4) gives

1· (a [liT] + 1 - aC'''] \ t'-'1m n ) = aex "
n- x An /

and

I , (bCtllJ+l-bCtllJ\ b t,-11m n )= a ,
1l~X; )." /

for t >0.

LEMMA 3.1. Let an and bn be given by (3.7) then

(3.12)

and
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Furthermore

p={:-s
20( -s

0(>1

s>o O(=~

s > 0 0( <~.

(3.14 )

1 n

T L la;+1-2a;+£l;_11 =0(1)
n i= 1

and

1 n

T L Ib;+1-2b;+b;_11 =0(1)
n i= 1

If

0(>0

0( > o.

(3.15)

(3.16 )

[£1;+ I - 2£1;+ £1;-1] = OU- I - P) = [b;+ 1- 2b;+ b;-I]
a; b;

0<{3<1

(3.17 )

for i large enough, then the o( 1) in (3.15) and (3.16) may be replaced by

O(1/n"),

Proof If we write

0(>1

s>O 0(=1

s>O 0«1.

(3.18)

where (3.9) has been used. This implies that (£1;+1 -a;) is regularly varying
with index 0( - 1, hence (a; + I - aY is regularly varying with index 2( 0( - 1).
The first part of (3.13) now follows from Karamata's theorem for regularly
varying sequences [3, Theorem 6] which says that if c(k) is regularly
varying with index IX then

1 n 1
lim I + P L k Pc(k) = ,
n~Y)n c(n)k~1 1+{3+0(

(3.20 )
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for f3 > - (",( - 1. If IX::::;!, the result follows from Potter's bound [2, p. 25]
which says for every c > 0 and every slowly varying function I(x) there exist
constants C I and C2 such that clx-£ < I(x} < c2 x' for x sufficiently large. To
show the second part of (3.13) we write

Here i is assumed large enough so that i 2(i) # 0 (see (3.9)). Following the
reasoning above leads to the second part of (3.13).

To show (3.15), difference (3.19) to find

That (3.15) holds now follows from the Toeplitz-Silverman theorem
[6, p. 43] and (3.20) with c(k) = )-k and f3 = - 1. If the first part of (3.17)
is satisfied then Karamata's theorem and Potter's bound show that o( 1) in
(3.15) may be replaced by O(1ln<1), where (J is given in (3.18). Analogous
arguments applied to bt + I - 2b i + bt _ I yield the result.

Set

[A, B] = convex hunt {O}, [b - 2a, b + 2a J). (3.21 )

LEMMA 3.2. Suppose {aJ and {b i ]- are reguiarl}' varying sequences with
index of regular variation rx, at --+ 00, and Ib;1 --+ Cf:; or b = O. rr rx = 0 suppose
that

b #0. (3..22 )

Then for y ¢ [A, B] there exist a d> 1, an N e, and a fixed, finite N I s.!ch
that for n ~ No

IUoUn y, i)1 > d i = 1,2, ..., n + N I , (3.23a)

IvoO'ny, i)1 < lid i = 1, 2, ... ,11 + lV" (3.23b)

I)'()'n y, i)1 < lid i = 1, 2, ..., n + N" (3.23c)
and

IW(Any, i)1 < lid i=1,2, ... ,n+N" (3.23oi

where Uo, Va')'' and ware defined in Eqs. (1.6), (1.7), (2.47), and (2.48).
respectively.
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Proof Since an and bn are regularly varying sequences one finds [3,
Theorem 5]

and

(J < lI.,

r>lI.,

(3.24 )

(3.25 )

(3.26)

where we have assumed b i= 0 in the second parts of (3.24) and (3.25).
Suppose for convenience that b > 0, then for Y real and greater than b + 2a

.. . (Y-bkfA n). (Y-b) y-bhm mf mm ?: mf (-/1 -- =--> 1,
I,,;;k,,;;n 2(a,jAJ IE[O,I] 2a 2a

where (3.24) with lI. > 0 or (3.22) with lI. = 0 has been used, If Y is less than
b + 2a and Y fj: [A, B] it must be negative and less than b - 2a, Using (3.24)
and (3.25) for lI. > 0 or (3.22) and (3.25) for lI. = 0 we find that

, (Y-bk/An) y-bhm sup max :::;;--<-1.
I,,;;k";;n 2(ak/A n) 2a

For Y complex we examine the imaginary part of An Y - bkfak' For
1m Y > 0 (3.22), for lI. = 0, or (3.24), for lI. > 0, implies that
lim inf min1o,,;;n 1m y/(ak/An) = 1m Y, while for 1m y < 0 the same
equations say that lim sup max1<::k,cn 1m y/(akfAn) = 1m r, Since
~ ~~ .

Iz+~z2-41>1 for :::fj:[-2,2] the above arguments show that for
yfj: [A, B] there exist d> 1, an No, and an N1 such that for all n?:No

luo{An y, i)1 > d i= 1,2, "., n + N 1 , (3.27)

Similar manipulations can be used for the cases b = 0 and b < 0 to arrive
at (3.27). Since VO(AnY, i)= ljuo(AnY, i), (3.23b) follows from (3.23a), To
prove (3.23c) write

a· J(A J! - bi
+ 1)2 )!( J(A J! - b.)2 )_~ n_ -1 2 n. 1 -1 .

ai 2ai+ 1 2a;
(3.28 )
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From (3.22) and (3.25) for a = 0 or (3.24) and (3.25) for a> 0 we find that
for sufficiently large nand y f/=. [A, B] there exists a constant c > 0 such tha~

\
2a . ( I ) I Ij(' b \ 2 4a 2\J-' uo(),,,y, i)- () , .) =2. Y--)')' --0- >c.

I/Ln, Uo "n.1,1 "n /"n

(3.29 \

Clearing the radicals in the numerator of (3.28), then using (3.29), yields

(3.30)

Equation (3.4) and the condition ;,,, ~x now gIVe (3.23c). Equation
(3.23d) follows from

which is arrived at starting from (2.48) and using manipulations similar to
those used leading to (3.30).

LEMMA 3.3. Suppose (3.2), (3.3), and (3.4) hold with aU) ~ x' and
Ib(i)I-> x or b=O. Suppose y¢[A,B], No,N 1 are as is Lemma 3.2 Gnd
((J'nY, i) and S'(A"),, i) are given by (2.33a) and (2.33b) respectively. Jf".l.>O
then

and

fl+,Vl

L I((A" y, j)1 = o( 1),
j~l

If'Y. = 0 suppose (3.22) holds and

(3.32 )

1 n I n

T L la'+1-2ai+ai_d=o(1)=~ L Ib i + I -2b,+b,_II, (3.331
l!i=2 rnl=l

then (3.31) and (3.32) are still valid.
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Proof From (2.53) and Lemma 3.2 we find that for n ~ No

I
~O"nY, i) I

(a(j + 1)/a(j» U2(A nY, i + 1) U2(A ny, i)

~ IY(Any, i + 1) Y(A nY, i)1 + IY(AnY, i + 1) - Y(A nY, i)1

+ I Uo(AnY, i) - l/uo(AnY, i) [I I'(A ' ·W.
(a(j+l)/a(j»u2(Any,i+ l )} nJ,J

Since IUO(A nY, i)/UO(AnY, i + 1)1 is finite and IUO(Any, i)1 ~ 1 for all nand i,
Lemma 3.2 implies that

I
UO(An y, i) - 1/Uo(An Y, i) I~ 2C (1 + ~).

(a(j+ 1)/a(j» U2(AnY,i+ 1) '" d

From (2.47) and (2.48) we find

n

L iI'(Any, i + 1) - y(An Y, i)1
i=l

C n

~T L [la i +2-2ai +1 +ail + Ib i +2-2bi +1 +bilJ
n i= 1

and

n+Nl

L IW(AnY, i+ 1)-w(AnY, i)1
i~l

C n+N,
~T L [la i +2-2ai +1 +ail + Ib i +2 -2bi +1 +bilJ

n i= 1

C n+N,
+ A; L [lai+l-aiI2+lbi+l-biI2].

n i= 1

If IX> 0 the result now follows from Lemma 3.1 while if r:t. = 0 the result
follows from (3.9) and (3.33).

THEOREM 3.4. Suppose Y ¢ [A, BJ and (3.2), (3.3), and (3.4) hold with
ai ~ 00 and Ibil ~ 00 or b = O. If rx > 0 then there exist No> 0, N j , and solu-
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tions y -,- (i,,, y, m) and y _ (An y, m) of (1.1) with the substitutions given hr
(3.1) such that for n ~ No

and
I m I
I y-(}."y, m) TI V2(A"Y, i)-1-1!
I i=l I

m = 1, 2, ..., 11 --i- N I , (3.34)

( In 1
:( exp ~ C L I((A" y, j)i (- 1,

l j~ I )

m=1,2, ...,I1+N1 • (3 ..35)

The RHS of the above inequalities tend to zero as n tends to infinity
If rx = 0 and (3.22) holds then (3.34) and (3.35) are still valid;furthermore

if (3.33) is also true then the RHS in the above inequalities tend to zero as
n tends to infinity.

Proof In order to prove (3.34) we must show that for J' ¢: [A, B] and
n ;?: No there exists a C such that

In-l k 1
"\' '\' < C n + N I > m > i> O.
L. L. ( /. I' (), 1 ( 1 ")1 'k~i J~i+1 ai+I,a;l t' 2 'nJ,j+ ) U2 /t,,),.! I

(3.36)

and this follows from Lemma 3.2. (Note that j stam from i + 1 instead of
i because of the denominator in the LHS of (3.34).) That the error term is
o( 1) in (3.34) when rx > 0 or if ct = 0 when (3.22) and (3.33) hold is a conse·
quence of Lemma 3.3. In order to prove (3.35) we must show that for
y ¢ [A, B] and n ~ No there exists a C such that

i

I
k=m+l

n+N~;?:i>m>O.

which again follows from Lemma 3.2. Lemma 3.3 can now be invoked to
determine the decay of the error terms.

THEOREM 3.5. Suppose y¢ [A, B], and (3.2), (3.3), and (3.4) hold with
a i -*% and Ibil -* (f.j or b = O. Let p(x, n) be the solution of (1.1), with din;
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(3.38 )

and q given by (3.1), satisfying the initial conditions p(x, -1) = 0,
p(x, 0) = 1. If rJ. > 0, or for rJ. = °if (3.22) and (3.33) hold, then

I PP·n y, n) i~1 u2(AnY, i)-I-II = 0(1).

Proof We begin by examining the Wronskian, W, of Y + and Y ~

given by W(y+,y_)(i) = ai +1(y+(A"y,i+l)y_(A"y,i)-Y+(Any,i)
Y_(A"Y, i+ 1)). W(y+, Y_) is independent of i and may be evaluated by
setting i equal to one, which yields

W(y+, y_)(I)=a2u2(A"Y, 1) v2(A"y, l)(u2(AnY, 2)(1 +q)(A"y, 2))

-v2(A nY, 2)(1 +~(AnY, 2)).

Equations (2.7), (2.20), and (3.1) with f(i) = u2(AnY, i) and g(i) = v2(Any, i)
have been used to arrive at the above equation. If we now use (1.6), (1.7),
(1.13), (1.14) and Lemma 3.2 we find

W(y +, Y _) = a2 An ( (UO(A;:', 2) _ VO(A;~" 2)) (1 + 0(1))). (3.39)

Since uo(A" Y, 2 )/An -4 y/a2 and vo(An Y, 2)/,.1." -4 0, (3.39) implies that
Y+(A"Y, i) and Y_(AnY, i) are linearly independent for n sufficiently large
and i = 1, 2, ..., n + N I • Therefore

p(A" y, i) = Cy + (A" y, i) + Dy _ (An y, i), (3.40 )

where D= - W[p, y+]/W[y+, y_], and C= W[p, y_]/W[y+, y-J.
If we define y+(x,O)=((x-bl)/adY+(x, 1)-(a2/a 1 )y+(x,2) and use
(2.7), (2.14) (all with N= 1), and (2.1) then y+(x, 0)= 1. D can now be
evaluated using the above equation, the initial conditions satisfied by p(x, n)
and (3.39) which give D=(a 1 [p(An y,I)-y+(An,I)]/Any)(I+0(1))=
0(1), where limn~ ~ p(AnY, 1)/.1n=al =limn~~ Y+(AnY, 1)/An has been
used. Thus (3.40) becomes

The fact that Y_(A"y,n)/TI7~lu2(A"y,i)-40as n tends to infinity (see
Theorem 3.4) has been used to obtain the o( 1) term in (3.41). To evaluate
C we note that

C= [p(A"y, 2) Y_(A"Y, 1)- pp."y, I)Y_(A"y, 2)] .
[Y+(A"Y, 2) Y_(A"Y, 1)- y+(A"Y, 1) y_(A"Y, 2)]

(3.42 )
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It follows from (1.7) that vo(z) - O(l/z) and this combined with Theorem 3.4
shows that lim'H 00 pO-n y, 1) J' _ (J'n Y, 2) = 0 and limn ~ <XO (PUll y, 2)
y~(Any,,1)-Any/a2)=0. Using these results and (3.39) we find
C = 1+ o( 1). Substituting this into (3.40) then using Theorem 3.4 gives the
result.

COROLLARY 3.6. Under the hypothesis of Theorem 3.5 it follows that

yrJ [A, B], (3.43 )

where the convergence is uniform on compact subsets of C \ [A, B]. Here
)'(,1,,, y, i) is given by (2.47), and C is the complex plane.

Proof From (3.38) we find that

(3.44 )

where the convergence is uniform on compact subsets of C \[A, B]. From
(1.13) and (3.30) it follows that

1 . l' ( 1 . ((IG;+I-a;1 , Ib;+j-b;I\2\\\
112(/'''y, 1) = UO(A"y, I) 1+)'(A"Y, 1)+0 A --r- ) ), I'

n "" / ) /

(3.45)

By Lemma 3.2 b'(An Y, 01 < 1 for n sufficiently large and i = 1, 2, ..., fl. The
result now follows by extracting 1+ )'(Aff y, i) from the parenthesis in (3.45)
and using Lemma 3.1.

Although (3.5) gives slowly varying functions II(x) and 12(x) such that
a" = analj(n) and b" = bn"/2(n), Ij(x) and 12(x) are not unique since they are
determined only at the positive integers. We shall replace these by slowly
varying functions

L,(x) = (/;(n + 2) - 2/;(n + 1) + I;(n))((x - n)3 - (x - n)2)

+ (/;(n+ 1)-I;(n))(x-n)+I;(n), n::::;x::::;n+ 1, i= L 2

(3.46 )

where for L1(x) we take n ~ 1 while for L 2(x) we let n ~ O. We note that
this choice of L; (x), i = 1, 2, gives

(a) L;(n) = I;(n),

(b) L;(n)=I;(n+ 1)-I;(n), and

(c) L;'(x)=0[I;(n+2)-2/;(n+ l)+I;(n)] for n<x<n+ 1.

640;'69,3-5
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LEMMA 3.7. Let L[ and L z be as above; then L[ and L 2 are C[ slowly
varying functions, limx~ CG L[(x)j/[(x) = 1 = limx~ 00 L z(x)jI2(x). If

and

1l(~0,

(3.47)

(3.48)

where Il( is given by (3.4), then

and

IfIl(>O then

(3.49)

(3.50)

If Il( = 0 and (3.33) holds then (3.51) is still valid.

i= 1, 2. (3.51 )

Proof The continuity of L[(x) and its derivative follow from (3.46) (see
(b) above). From (3.2) and (3.5) (see also Bingham, Goldie, and Teugels
[2,p.6]) we find I[(x)j/[(n)-d as n-HJJ uniformly for xE[n,n+l].
Therefore L[(x)/I[(x) ---+ 1 which with (3.6) implies that L[(xt)jL[(x) ---+ 1 as
x ---+ 00 for every t> 1. Hence L [(x) is slowly varying.

Now differentiate (3.46) with i= 1 to find R~(y) = Il((R[(y)/y + y~L'[(y).

Therefore

(3.52)

where for convenience we take M to be an integer. The first term in the
above equation can be bounded in the following fashion:

1 fn IR[(y)1 2 1 n-l 1 i+l 2
A,2 -,- dy< A,2 L :z f. IR[(x)1 dx.

n M} n i=M I I

(3.53 )

From (3.46) and (3.47) we find that

(R[ (X))2 < 3X2~{ C2(i)2( (x - i)3 - (x - i)Z)2 + C [(i)2(X - i)2 + I[ (i)2},



WKB ANALYSIS OF DIFFERENCE EQUATIONS

with

and

Consequently (3.53) is bounded by

3 n ~ 1 (i + 1f" .' 2 . 2 • 2 (' 1 n+ 1 af)
)'~i~H i 2 (C1(1) +C2(1) +ldl) )=0 a;'i~\I i 2 '

295

(3.54)

(3.55)

(3.56 )

where the last equality follows from (3.2), (3.7), and (3.54). Hence from
(3.20) we find (l/A;') J~f(R1Lv)/yf dx = a( 1). Analyzing the second term on
the RHS of (3.52) yields

so that (1/A;,)tl-fy2"IL'1(yWdy=a(1). This coupled with the above
remarks gives the first part of (3.51). To show the second part of (3.51)
write R~(y) = IX(IX -1) R 1(y)/y2 + 2IXy,,-lL ~CJ!) + y"L~( y). Now calcula­
tions similar to the ones that led to (3.56) give

(3.57)

where Eqs. (3.2) and (3.4) have been used to obtain the last equality.
Finally we examine

1 n 6 n-l

'f J ly"L~(y)1 dy~'f L (i+ 1)"C2(i)·
n lYl ni=M

From (3.54) and (3.7) we find

(3.58)
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(3.59)

Therefore L 7::~ i a IC2(i)I= o( 1) by Lemma 3.1 and (3.20), and the second
half of (3.51) follows.

If (J( = 0 and (3.33) holds we find from (3.46) that R~(y)= L~(y) and

1 In 2 n-l
A2 IL~(yWdY:::;;A2 L {CI (i)2+C2(i)2}

n M ni=!lt[

(
In -1 , I a i + 1 1

2
):::;; 0 2 L ai --. - 1 ,

an i~M a,

which is 0(1) by (3.2) and (3.4). The second part of (3.46) with (J( = 0
follows immediately from (3.33) since

1 n 6 n-l
TI IR~(Y)ldY:::;;T L {IC2(i)I}.

n M tli=M

The proof of (3.51) for RAy) is the same as that given above.

We are now ready to prove the main result of this section.

THEOREM 3.8. Suppose Y rf. [A, B] and (3.2), (3.3), and (3.4) hold with
ai -+ 00 and Ibil -+ 00 or b = O. If (J( > 0, or for (J( = 0 if (3.22) and (3.33) hold,
then

1
. p(Any,n)
1m

n ~ X! n7~ I UO(A n y, i)

{
(X-b)2_4a2}-1/4 {b 1 ds }

= X2 exp 2" LJ(x-bs)2-4a2b2

uniformly on compact subsets of C \ [A, B].

Remark. This result for (J( > 0 was first proved by Van Assche and
Geronimo [21].

Proof Lemma 3.2 implies that for any compact set K c C \ [A, B] there
exists an No such that for n ~ No, ly(Any, i)1 < 1, i = 1, 2, ..., n. Therefore

. .II d{J
In(1 + y(Any, I» = yUn y, 1} 1+ (J I(A .)

o } nY, I

= y(An y, i) - Y(A n y, i)2r1 +:(~ 'l (3.60)
o },,}, I

From (3.9) or (3.13) it follows that L7~1 y2(AnY, i)=o(l), hence

n n

L In(l +y(A"Y, i»= L Y(AnY, i)+o(l). (3.61)
i=l i=1
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Q(X)=J(y- bR2(X))2 -4a2(R1(X))' 2, (3.62)
An An

where (3.47-(3.50) have been used. We find from (3.46), (3.22), and (3.8)
that IQ(x)1 > C>O for iX;?:;O, y¢ [A, B], 1~x~n, for n sufficiently large.
Applying the Euler-Maclaurin formula [16, p.283] to the sum on the
right hand side of (3.61) gives

"L In(l + )'Un y, i))
i=1

_n 1 1
= J

M
)'(Any, x) dx +"2 )'(Any, M) +"2 )'(Any, n)

M-I 1 n d 2

+ L )'(..1." y, i) +- f (B2- B2(x - [x])) -21'(}'" y, x) dx + 0(1).
i~l 2 M dx:

(3.63 )

Here

'(A ,x)=(b(R2(x+1)-R2(x)))/An+Q(x)-Q(x+1)
1 nJ, 2Q(x) (3.64 )

which is finite since IQ(x)1 > O. Equation (3.30) implies that the second and
third terms on the right hand side of (3.63) are o( 1). For fixed M the same
is true for the fourth term on the right hand side of (3.63). If we differen­
tiate (3.64) with respect to x we find

'(A ' ),_b«R;(X+1)-R;(x)/An)+Q'(x)-Q'(x+ 1)
1 n),X - 2Q(x)

_ {b((R2(X + 1) - R2(x)/A Il ) +Q(x) - Q(x + 1)} Q'(x'.
2Q2(X) }

Differentiating once again, then using Lemma 3.7 and the bound
IB2-B2(X)I~!for XE [0,1], yields

= 0 [f IR~(x)1 + (IR~(X)I + IR;(X))2 dxJ
M All An
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which is 0(1) by Lemma 3.7. Therefore

±In(l+y(A"Y,x))=ry(A"Y, x) dx+o(1). (3.65)
i=l M

An application of Taylor's formula with remainder to (3.64) yields

(b/An)(R;(x) +! S;+ 1 R~(z)(x +1- z) dz) S;+ 1 Q'(Z) dz
y(AnY,X)= 2Q(x) 2Q(x) .

The numerator of the second term on the right hand side of the above
equation can be rewritten as

I

x+1 1 IX+ 1
Q'(Z) dz = Q'(X) +- Q"(Z)(X +1- z) dz.

x 2 x

From Lemma 3.7 we find

~In Ig +
1
R~(Z)dZI dx~~In supzE[x,x+l] IR~(z)1 dx=o(I).

An M 2Q(x) An M 2IQ(x)1

Now

and it follows from Lemma 3.7 that

I
" 1J:~+lQ"(Z)(X+I-Z)dZldX
M Q(x)

= 0 ([S;+l {a IR~(x)1 +b IR~(x)1 +a2IR~(xW + b2IR;(xW} dX)

= 0(1).

These results imply that

f
n b I" R;(x) In Q'(x)
MY(A nY, x) dx = An M 2Q(x) dx- M2Q(x) dx + 0(1). (3.66)

If we integrate the second term on the right hand side of the above equa­
tion, then let n tend to infinity, we find

lim fn Q'(x) dx= lim ~ln Q(n) =~lnJ(Y-b)2-4a2
n~oo M2Q(x) n~oo2 Q(M) 2 Y ,
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(3.68)

since (3.2) and Lemma 3.7 show that limn~ cyo Rz(n)/)'n = limn~ xc Rl(I1)/I~n

= 1. Choose s > 0 then fix the integer M sufficiently large so that
IRI(x)jRz(x)-ll<s for all x?;M, and examine the first integral on the
RHS of (3.66),

1

1 fn R~(x) dx 1 f" R;(x) I- dx-- --dx
An M Q(x) An M Qz(x)

= 4azlf" R~(x)((Rl(X)jRz(xW-1) R~(x)j).~dxl. (3.67)
),,, M Q(x) Qz(x)(Q(x) + Qz(x))

Here

From (3.46), (3.22), and (3.8) there exists a C>O such that IQz(:dl > C,
for y if- [A, BJ, and 0::::;; x ::::;; n, n sufficiently large. Furthermore
Q(x)# -Q2(X) for n large enough which implies that there exists a C>O
such that IQ(x) + Qz(x)1 > C. These inequalities show that the integral on
the RHS of (3.67) is bounded by

4a
z
s fn Id 3()1 4a

2
c; R~(n)

::::;; R z x ::::;; 3 '
3A~ CZC M . 3CzC A"

where the change of variable z = Rz(x)jRz(n) has been used to perform the
integration. The same substitution shows

1· 1 f" R;(x) d1m - -- x
n~xcAn MQz(X)

= lim Rz(n) fl dz
n~x, An Rz(M),'R2(n) J (y - bz(Rz(n )/In))z - 4aZ(R~(n )/l~) ;;z

fl dz (3.69)
- 0 J(y-bz)Z-4aZzz'

where (3.2) and Lemma 3.7 have been used to obtain the last equality.
Therefore (3.69), (3.68), and (3.66) yield

lim I f In(I+)'(Any,x))-~2r I dZ, J

,,_.x, i~l 0 ~(y-bzY-4a-zz

1 (y-b)2_4aZI 4az
8

+-In J ::::;;-,

2 Y- I CZC

and since s was arbitrary this gives the result.
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